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1.    Introduction 

Oceanic and atmospheric processes are characterized by 
motions of different scales which often manifest themselves 
by distinct maxima in the spectral density of a background 
model state and in the spectra of background error 
covariance (REC) matrices. Numerical modelling of the 
multi-scale REC structures in variational data assimilation 
is a challenging task which has recently drawn a significant 
attention due continuous growth of computer power. In 
particular, it is desirable to formulate the scale-dependent 
BEC operators (Dance, 2004), which can account for 
smaller-scale components present in very high-resolution 
models. The term 'multi-scale correlation function' is also 
used in the theory of turbulence and reflects covariances of 
multifractal nature characterized by the power-law decay of 
correlations (e.g. Mandelbrot, 1997). 

A straightforward way to construct multi-scale BEC 
operators is to use suitable superpositions of the single- 
scale correlation functions for modelling the REC matrix 
elements (e.g. Hristopulos, 2003; Gaspari etaL, 2006). In 
this approach, the resulting spectrum is difficult to control 
directly by the free parameters of the correlation functions 
and care should be taken to maintain positive definiteness 
of the correlation matrix. 

A promising approach is to introduce scale separation 
in the REC models by splitting the covariance matrix into 
several additive single-scale components (e.g. Wu etaL, 

2002; Purser etaL, 2003) and perform assimilation on a 
sequence of grids with increasingly fine resolution (Li et aL, 
pers. comm. 2012). 

A multi-scale BEC operator can also be constructed 
using a polynomial of the discretized diffusion operator 
for representing the inverse covariance. This approach has 
been studied by many authors (e.g. Sasaki, 1970; Wahba 
and Wendelberger, 1980; Purser, 1986; Mclntosh, 1990; Xu, 
2005). Its attractive features are the flexibility in controlling 
the REC spectrum and the low cost of computing the action 
of the inverse BEC matrix on a state vector. In practice, 
however, applications of this approach were limited to 
BEC operators with Gaussian-shaped correlation functions 
and their approximations (e.g. Weaver etaL, 2003; Di 
Lorenzo et aL, 2007). Among the reasons for that limited 
applicability is poor conditioning of the BEC operators 
generated by high-degree polynomials and the necessity 
to link polynomial coefficients with the shape of the BEC 
spectrum. In the recent studies of Hristopulos and Elogne 
(2007,2009) and Yaremchuk and Smith (2011), correlation 
functions associated with an arbitrary quadratic polynomial 
of the homogeneous diffusion operator were obtained and 
relationships between the polynomial coefficients and the 
magnitude/length scale of the corresponding spectral peak 
have been provided. 

In this note the result of Yaremchuk and Smith (2011) is 
extended for the case of an arbitrary polynomial, generating 
a multiple-peak BEC spectrum. Besides, it is shown that 
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the action of the BEC operator can be reduced to a 
sequence of inversions of the quadratic functions of the 
diffusion operator, thereby relaxing the above-mentioned 
conditioning problem. 

2.    Homogeneous multi-scale correlation functions 

This note deals with covariance modelling in R", although 
the results can be extended to an arbitrary differentiable 
manifold of constant curvature. 

A general form of the inverse BEC operator built as a 
polynomial of the homogeneous diffusion operator A is 

and can be interpreted as the scales (fc;') and magnitudes 
(a~l) of the modes forming the spectrum. 

Since the reciprocal of B~\k) provides the spectral 
representation of the BEC operator, the matrix elements 
B(r) of B (covariance functions) depend only on die distance 
r from the diagonal and can be obtained in the form of a 
single integral over t. 

B?(r) 
k»lMkr)dk 

0     in 

(6) 

B-' = I + £C*,A'. (1) 
/-i 

Here I is the identity operator and or, are real numbers, 
constrained by the positive definiteness requirement of 
B-1, which can be taken into account explicitly by 
diagonalizing B-1 via the Fourier transform. In the 
Fourier representation the inverse BEC operator acts 
as multiplication by the polynomial in k2 s \k\2 (k is 
the wavenumber), and the positive-definiteness property 
translates into the requirement for the spectral polynomial 

Here / denotes the Bessel function of the first kind, n is the 
dimension of the physical space and s = n/2 — 1. Equation 
(6) is obtained by substitution of the reciprocal of Eq. 
(3) into the integral of the inverse Fourier transform and 
integrating over the solid angle in the wavenumber space 
(e.g. Yaremchuk and Smith, 2011). The integral (Eq. (6)) 
can be taken by decomposing 

*(*) = n<*2+»i><*2+ä£> 
(7) 

into elementary fractions: 

i-W-. + ti-« w «w-jj^ + p^]. 

to be positive for all k2 > 0. This constraint is equivalent to   where 
the statement that the right-hand side of Eq. (2) must not 
have real positive roots. A particular form of the even-order 
polynomial satisfying this requirement is <\m= — 

7. 

<äi-4>n<*i-*?><4-*?>' 

(8) 

(9) 

B-,(k2) = -Y[{k2+z1
m)(k

2 + z1
m), 

where M = L/2, 

*=rtei*- 

(3) 

(4) 

where overline in Eq. (3) denotes complex conjugate 
and zm = am + ibm are arbitrary complex numbers with 
ombm ?& 0. In its general form, the polynomial (3) is 
additionally multiplied by the product over the arbitrary 
number of real negative roots. To simplify the formulas, we 
consider this case in the Appendix, and focus on the analysis 
of Eq. (3) omitting the product (summation) limits over 
m and assuming there are no real negative and multiple 
roots. The latter requirement is not restrictive for practical 
purposes, because location of the roots is never known 
exactly, and the BEC spectrum can be well approximated by 
Eq. (3) (see Appendix). 

It is instructive to note that expression (3) can also be 
rewritten in the form 

By replacing Eq. (7) in Eq. (6) with the sum (8) the 
integral is reduced to the sum of Hankel-Nicholson type 
integrals (e.g. Abramowrte and Stegun, 1972, eq. 11.4.44) 
and can be taken explicitly. The cited integral is valid if the 
following constraints are satisfied: (a) —1 < s < 3/2 and (b) 
the real part of zm is positive. The first condition is met in the 
practical cases of 0 < n < 5. Furthermore, in view of Eq. (5) 
both am and bm can be assumed to be positive without loss 
of generality and thus the second constraint is also satisfied. 
The resulting expression for fl(r) is 

2r- 
B"(r)-^D*,/4K,(A.)>. (10) 

where pm = z„r, K stands for the modified Bessel function 
of the second kind, and angle brackets denote taking the real 
part. 

The corresponding correlation functions C{r) are 
obtained through normalizing Eq. (10) by B"(0). For rt < 4 
the BEC function values at r = 0 are 

4m« 2 +(k-bm)2\\a2
m + (k+bm)2\. (5) 

Compared to the spectral representation (Eq. (2)), 
representation (5) has the advantage that its free parameters 
are not constrained by the positive-definiteness requirement 

B'(0)    = £{<frÄ,)|z*r2, 
m 

B*(0)    =--V(<Jmlogzm), 
m 

B3(0)    =-^~ £>«,*„>. 

(ID 

(12) 

(13) 
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In one- and three-dimensional cases the correlation 
functions can also be expressed in terms of the exponents: 

CHr) = 

£(qmzme-»")/\zm\2 

£<<f-»Zm)/|2j2 

2nr 51(qmzm) 

(14) 

(15) 

N" = 

3.    Practical issues 

B"(0) l*J4   ' 
(16) 

In applications, a BEC model is often constructed by 
fitting spectral (7) or correlation (10) functions to those 
derived from experimental data. The random fields under 
consideration are characterized by 2m parameters, which 
give enough freedom for approximating complex spectra. 
The approximation procedure can be formulated as a least 
squares problem in 2m dimensions, which may be rather 
complicated due to nonlinearity of B with respect to the 
fitting parameters a,„ and bm. Therefore it is useful to 
have guidance on how the magnitudes and locations of the 
model peaks are related to the scales and amplitudes of the 
physical modes contributing to the experimental spectrum 
(Figure I). 

The contribution of the mth mode to the spectrum can 
be assessed by integrating the right-hand side of Eq. (8): 

3b 

(17) 

In the limit when distances \bt — bm\ between the spectral 
peaks of B are much larger than their half-widths am (i.e. 
"m/t'n, <K 0 in particular), Eq. (17) can be simplified using 
the asymptotic approximations 

ib„ Hm 
bi 

4wmn„ 
n^na-si/^)1. 

so that 

I'm ~ 
4«mnm 

(18) 

Asymptotic values of spectral density at the peaks are 
respectively 

Aamnm      7ta„ 
(19) 

i.e. the peak amplitudes are inversely proportional to am 

and to the square of the mode scale h~*. Expressions 
(17)—(19) can be useful in generating the first-guess values 

for Zm to initialize an iterative procedure of approximating 
experimental data. 

After the model parameters are established, the action 
of the inverse BEC operator can be computed recursively 
by 

B-' =Y\[l-\zi\-2M2{zi)l-H)]. (20) 

Relationships (10)—(13) provide analytical expressions 
for the multi-scale homogeneous BEC functions and the 
corresponding CFs. In many applications, it is often 
important to know the value N of the convolution of B with 
the j-function at r = 0 (the normalization factor) which is 
used for constructing the BEC operator numerically. The 
factor can be found by integrating C(r) over R": 

The inverse BEC model (Eq. (20)) can then be employed 
either to compute the action of B using an iterative inversion 
scheme or to directly compute the gradient of a 3dVar cost 
function involving the quadratic form xTB-lx, where x is 
the state vector. 

The considered multi-scale BEC operators can be 
used in many oceanographic applications, where the 
background errors have multi-scale spectra. For instance, 
surface waves are often characterized by two-peak spectra 
generated by the swell and locally forced wind waves. 
Filtering such a wave-induced signal from observations is 
important in many applications (e.g. vertical positioning 
of the autonomous underwater vehicles, turbulence 
microstructure measurements in shallow seas). 

Figure 2(a) demonstrates typical velocity spectra, 
derived from observations by an upward-looking bottom- 
mounted acoustic Doppler current profiler (Korotenko 
etaL, 2012). Measurements were taken in the period of 
well-developed wind waves with a dominant frequency 
/~0.2 Hz superimposed on the swell (f — 0.1 Hz) 
propagating from the Bay of Biscay. Slight asymmetry 
of the beam directions with respect to the vertical 
prevents cancellation of the wave-induced orbital motions 
in averaging over the beams and contaminates the 
turbulence spectrum with a double-bump feature seen in 
Figure 2(a). 

Impact of the surface waves can be removed by 
constructing a rational filter (e.g Antoniou, 2000) F(k) = 
B(k)B~[(k) using the polynomials (1) of the diffusion 
operator A = d„. The rational function F{k) can be obtained 
by adjusting the filter parameters z,z to the ratio between 
the observed spectrum and its power-law approximation 
(dashed line in Figure 2(a)) in the wave-contaminated 
frequency band io = [0.06 - 0.4] Hz. After the adjustment, 
the matrix elements of B are computed using Eqs (10), 
(14): 

B(t) 
mm.\ 

*"*•• coaler+ arg(*11Ä,)l,     (21) 

whereas    the    action    of    B"1    is    given    by    Eq. 
(20): 

2 

5"' = n[l-i£r23»(2<£>-3«)]-    (22) 

The filter is implemented by differentiating the series 
with Eq. (22) and then smoothing it with the kernel 
(Eq.(21)). 

Figure 2(b) demonstrates the result of fitting the filter 
parameters z„, z„ to the wave-induced part of the spectrum 
shown in Figure 2(a). The fit has a relative error of 7% within 
the target band of 0.06-0.4 Hz. In the same frequency band, 
the filtered series spectrum has similar (6%) deviation from 

Copyright (c) 2012 Royal Meteorological Society Q. /. R. MeieoroL Soc. 13«: 1948-1953 (2012) 
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Figure I. An «ample of the normalized spectrum B<Jk) (Eq. (7). left panel) and the respective correlation function fl(r)/B(0) (Eq* (10.12). right panel) 
for M = n = 2,    *, = .5 + 3i;     z2 = .2 + 6i. 

W  ,u 
——■ :!.;. ' ' n 

* 10-2 

.;.j... •TJ^FJV <••• .1..{..(.. 

10-a 

i 

i •••]■"*•■ 

■<V:.::: 

10-* 10-1 

f.Hz 

Figure 2. (a) Power spectrum of thecross-shore velocities near Boulogne-sur-Mer on 15 lune 2009 (bUck line) nieaiured at I »resolution. Conlamination 
by surface wave» is seen as a pronounced double peak. Grey line shows the spectrum of filleted series, (b) Sc>Hd buKk Hne ia the ratio between the olwerved 
spectrum and its power-law interpolation (dashed line in left pand) within the wave-contaminated band a>. This ratio was used for constructing the fiher 
F, whose spectrum is shown in grey. 

the power law when normalized by deviation of the observed 
spectrum from that law. Proximity of the filtered spectrum 
to the power law can be further improved by increasing the 
order M of the polynomials B~' (k) and S"' (Jt). 

4.   Summary and discussion 

Analytical expressions for the matrix elements of homo- 
geneous BEC operators generated by the polynomials 
(Eq. (I)) of the diffusion operator are obtained. The 
considered BEC operators can be used in geophysical 
applications involving multi-scale phenomena whose con- 
tribution to the spectrum can be modelled by adjusting 
the free parameters (polynomial coefficients) of the BEC 
model. Applicability of the technique to a simple two- 
scale one-dimensional filtering problem has been demon- 
strated. 

A particular advantage of the considered type of BEC 
operators is the fact that their inverses can be represented 
by sparse matrices that can be efficiently implemented 
on the grids of various complexity. Explicit partitioning 
of the inverse operators (Eq. (3)) ensures their positive 
definiteness and provides a recursive algorithm (Eq. (20)) 
for computing the action of the BEC operator which has 
reasonably conditioned matrices on each iteration. 

Presented results are also valid in the homogeneous 
anisotropic case, because the latter can be reduced to 
Isotropie form by the appropriate coordinate transformation 
(e.g. Xu, 2005; Yaremchuk and Carrier, 2012). The 
obtained analytical expressions for the correlation functions 
(Eqs (10-15)) can be useful in finding the BEC model 
parameters for the fields whose local decorrdarion scales 
p do not change significantly at distances of the order 
of p. 

In the more general inhomogeneous case analytical 
formulas for the matrix elements of B cannot be obtained, 
and inversion of the operator (Eq. (20)) has to be performed 
numerically. For the BEC models with M > 2 such inversion 
may encounter difficulties associated with the condition 
number of B, which grows exponentially with the number of 
model parameters. In view of the decomposition (Eq. (20)), 
however, this inversion can be performed consecutively 
by iterative solutions of M linear systems whose condition 
nu mbers are limited from above by the maximum eigenvalue 
ofi*2,r2A2. 

In higher dimensions (n > 1) the polynomial BEC 
model can be further improved by introducing anisotropic 
inhomogeneous diffusion operators separately for each 
mode. The respective diffusion tensors can be adjusted using 
prior knowledge of the impact of the background fields on 

Copyright © 2012 Royal Meteorologkai Society Q. I. R. MeuoroL Soc. 138: 1948-1953 (2012) 



1952 M. Yaremchuk and A. Sentchev 

Figure 3. An example of the normalized spectrum generated by adding 
two negative roots pi = I and fo = 4 to the spectrum in Figure I 
Ui = .5 + in Zi = .2 + 6;). Grey spectrum is the approximation obtained 
by replacing pi and pi with z\ » — 1.46 + .01 i. The approximation error is 
5%. 

the error characteristics described by the corresponding 
spectral peak. 

For the BEC spectra characterized by deep gaps between 
the peaks, the multi-scale approach of Li etaL (pen. 
comm. 2012) may prove to be more computationally 
effective, as it does not take into the account scale 
interactions, and adopts the additive BEC model. In the 
case when a pair of closely spaced peaks (Figure 2(a)) 
exists, the technique of Li etaL (pers. comm. 2012) can 
be generalized by introducing a two-parameter model 
to account for the additive BEC component at the 
corresponding scale. 

Appendix 

Real negative roots provide limited freedom to controlling 
the shape of the BEC spectrum because in this case the poles 
of Eq. (7) are located outside the range K > 0. Therefore, 
these poles just add a monotonously decaying function of k 
which has the largest impact on the long-wave part of B(k). 
Furthermore, spectral contribution of the negative roots can 
always be well approximated by a pair of complex roots 
e2 — b2 ± libs, where e is a small number (Figure 3). 

Taking N = I — 2M negative roots — p„ (p„ > 0) into 
account supplements all the formulas with an extra 
summation (product) over these roots. In the following, 
the 'negative-root generalizations' of the key formulas are 
listed. For clarity, we keep the numbering and abbreviate 
sums/products from the main text by (£} and {11} 
respectively: 

ß"'=i«n»n^+M 

*=<n>i>=<n>i>> 

(A3) 

(A4) 
n=2M+l 

Hm   = 

«,.,   = 

(4-2a,)inin(4+p-> « 
z 

; 0 < m < M, 

B"(r) = . ^D + E^-^AW   .     <A9) 
(2JT)1 

where p„ = p„r, and pH = ^: 

*'(0) =    ^E^^ + 'E»- (A10) 

11) ß2(0) =^UE'?-1O«(^)-<EM' (A 

ß,(0) = 27 [ i E«"p«-<E> j •    <A,2> 

2P» 

B=<n»n<,+/,»,A> 
n 
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